

Design and Realization of a GNU Radio based Visible Light Communication Testbed

Maugan De Murcia

European GNU Radio Days 2023

| □ ▶

Introduction

General context

- The growing interest in new technologies (IoT, cloud computing) results in a massive increase of the total mobile network traffic (370 EB per month by the end 2027¹)
 ⇒ frequency raise to exploit unused bands (5G, 6G)
- Optical Wireless Communication (OWC) systems constitute a promising complementary solution to RF based systems, especially Visible Light Communication (VLC) subset
- The concept of Software-Defined Radio (SDR) is applied beyond RF spectrum giving rise to **Software-Defined VLC**

¹Ericsson Mobility Report, Nov. 2021

Introduction

Thesis

- Context: partnership with a lightning manufacturer HOLIGHT as part of a research project, in order to develop low data rate (< 1Mbps) smart lighting solution for professional and industrial environment:
 - indoor localization
 - smart city
 - e-health

 \implies example: table lamp transmitting the restaurant's menu through light variations 1

• Theses's objectives:

- Implementation of a innovative SDVLC testbed based on GNU Radio
- Development of a VLC open-source library

¹https://presselib.com/article/ogeu-holight-lumiere-led-bearn

3/23

Optical Wireless Communication

- 2 Software-Defined VLC
- SDVLC Testbed
- Testbed Validation
- 6 Conclusion & Perspectives

- 2 Software-Defined VLC
- 3 SDVLC Testbed
- Instant Provide the Image And Ima
- **(5)** Conclusion & Perspectives

• •

Optical Wireless Communication

Radio / Optical wireless comparison

 OWC: free-space propagation of light from IR to UV to transmit information ⇒ complementary solution to RF systems

Lower cost

6/23

Optical Wireless Communication owc subsets

• OWC can be classified in different subsets according to the system specifications:

- Free-Space Optics: long range peer-to-peer communication
- Light-Fidelity: bidirectional high data-rate communication
- Visible Light Communication: illumination and communication
- Optical Camera Communication: low data-rate indoor communication

7/23

Optical Wireless Communication

Visible Light Communication

- VLC systems are generally composed of a LED as transmitter and a photodiode as receiver
- Mostly based on Intensity Modulation / Direct Detection (IM/DD)
- Signal frequency > critical flicker frequency (pprox 100 Hz) to be imperceptible

Optical Wireless Communication

2 Software-Defined VLC

3 SDVLC Testbed

Testbed Validation

5 Conclusion & Perspectives

Maugan De Murcia

< □ ▶

Software-Defined VLC

SDR adaptation

- Since SDR was initially designed to the needs of RF systems, **adaptation** is therefore required to perform VLC transmission:
 - Enabling baseband transmission (DC transmission)
 - **Optical front-end** (driver + LED/PD) instead of antennas (\implies real and positive signal)

Software-Defined VLC

Basic architecture

Optical Wireless Communication

2 Software-Defined VLC

3 SDVLC Testbed

Testbed Validation

6 Conclusion & Perspectives

Maugan De Murcia

- Based on USRP 2943R equipped with LFTX/LFRX daughterboards (DC-30 MHz)
- TX: 10 MHz optical front-end (OP amp. + MOSFET + \times 5 white LED)
- RX: Thorlabs **PDA36A2** photodetector (PIN photodiode + TIA)
 - \implies height, orientation and distance adjustable through a mobile trolley

TX Software

gr-owc¹: OOT module for optical channel propagation simulation
 Different modulation schemes available (OOK, 2PPM, PAM, DCO-OFDM)

100 kbps OOK emission flowgraph based on gr-owc

Working fine in simulation but not in a hardware implementation
 ⇒ lack of synchronization at the receiver

¹https://github.com/UCaNLabUMB/gr-owc

Timing Synchronization

 Symbol timing synchronizer¹: samples alignment according to the maximum opening of the eye diagram (⇒ timing measurement + timing adjustment²)

- Matched Filter: detecting the received signal from the known symbols
- Interpolator: moving the asynchronous samples to the desired time instants
- Timing Error Detector (TED): producing a signal that is function of the timing error
- Loop Filter: filtering the output of TED
- Interpolation Control: generating a synchronous clock for the Interpolator

¹Digital Communications: A Discrete-Time Approach, M. Rice, 2008
 ²Synchronization Techniques for Digital Receivers, U. Mengali and A. N. D'Andrea, 1997

Timing Synchronization

• AGC: maintains a constant level amplitude

• Decimating FIR Filter: matched filter

 Symbol Sync: introduced by Andy Wall in GRCon17¹ implementing different TED algorithms (Maximum Likelihood, Mueller & Müller, Zero Crossing...) (≡ Clock Recovery MM + Polyphase Clock Sync)

 \implies Hervé Boeglen's presentation: determination of optimal parameters by simulation rather than trial and error <code>approach</code>

¹https://www.youtube.com/watch?v=uMEfx |5Oxk

${\sf SDVLC} \ {\sf Testbed}$

RX Software

OOK reception flowgraph based on gr-owc with timing synchronization

Optical Wireless Communication

- 2 Software-Defined VLC
- **3 SDVLC Testbed**
- Testbed Validation
- 5 Conclusion & Perspectives

Testbed Validation

SNR Measurement

- Performance comparison of **3 TED algorithms** (ML, M&M and ZC) through the evaluation of **Bit Error Rate** with **different SNR**
- SNR measurement:
 - Spectrum analyser not adapted to baseband power signal measurement oscilloscope (RMS values)
 - Ambient noise level must remains the same along an acquisition darkness due to the high sensitivity of the photodetector
 - Different SNR values are obtained by changing the communication distance (from 1.6 to 3.1 meters)

Testbed Validation

BER Measurement

- BER measurement:
 - Comparison of message sent with received bits recorded in a file (*File sink*) with at least 10 transmission errors
 - BER curves are plotted as a function of Eb/N_0 (= normalized SNR) to not take bandwidth into account

$$Eb/N_0(dB) = SNR(dB) - 10\log\left(\frac{Rb}{Bw}\right)$$

Rb: bit rate, **Bw**: bandwidth, **Eb**: energy per bit, **N**₀: noise power spectral density

- Results are compared to the expected error probability of OOK

$$P_{e-OOK} = rac{1}{2} erfc \left(\sqrt{rac{Eb}{2N_0}}
ight)$$

erfc complementary error function

Testbed Validation

Results

• As expected ZC algorithm is less effective than ML and M&M

• ML and M&M algorithms got similar and accurate performances for BER less than 10⁻³

Maugan De Murcia

21 / 23

Optical Wireless Communication

- 2 Software-Defined VLC
- **3 SDVLC Testbed**
- Testbed Validation
- 6 Conclusion & Perspectives

Conclusion & Perspectives

Conclusion

- Adaptation of SDR to implement a SDVLC testbed based on GNU Radio
- Validation of the testbed operation through BER measurement for different TED algorithms

Perspectives

- Validation of the testbed with Non Light-Of-Sight (NLOS) transmission
- Integration of other VLC receivers (camera, solar cell) in the testbed

