

Gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz

aufgrund eines Beschlusses des Deutschen Bundestages

Robust Reception for a Satellite-based Global Rescue System European GNU Radio Days 2023

Felix Artmann, Marcus Müller

IntroductionCOSPAS-SARSAT

- Techniques and Algorithms
 - Signal Detection: Time and Phase
 - Signal Detection: Frequency Offset
 - Despreading
- Evaluation Over-the-air
- Conclusion & Outlook

COSPAS-SARSAT

Image source: INTRODUCTION TO THE COSPAS-SARSAT SYSTEM, C/S G.003, Issue 7, November 2019

3 Artmann, Müller: Robust Reception for a Satellite-based Global Rescue System

Project Setup

- Joint development effort with Becker AG
 - Manufacturer of aeronautical equipment
 - Had gen. 1 COSPAS-SARSAT devices, but no way to support gen. 2
- Project coordination: German Aerospace Center (DLR), financial support bei German federal Ministry of Economy Affairs and Climate Action (BMWK)

CEL Goals:

- Assist Becker in transition to SDR
- Develop reference implementation
- Value-add functionality through overlay system and awareness

CEL Theses:

- Reference transceiver (Elena Schütz, Felix Artmann)
- Overlay in satellite uplink (Messmer)
- Overlay in auxiliary chirp homing signal (Gölz, Manz, Messmer, ...)

IntroductionCOSPAS-SARSAT

- Techniques and Algorithms
 - Signal Detection: Time and Phase
 - Signal Detection: Frequency Offset
 - Despreading
- Evaluation Over-the-air
- Conclusion & Outlook

COSPAS-SARSAT – System Characteristics

Information bit stream: $300 \, bit \, s^{-1}$

- Message length = 300 bit
- Preamble length = 50 bit

Offset-QPSK

Direct Sequence Spread Spectrum

- Spread using Pseudo Random Noise (PRN)
- Two different sections of an m-Sequence for in-phase and quadrature components
- **I** : **PRN**₁
- Q: PRN₂

Properties

- Spread factor L = 256
- Output stream: 38400 chips/second
- Signal hidden from others

IntroductionCOSPAS-SARSAT

- Techniques and Algorithms
- Signal Detection: Time and Phase
- Signal Detection: Frequency Offset
- Despreading

Evaluation Over-the-air

Conclusion & Outlook

IntroductionCOSPAS-SARSAT

Techniques and Algorithms

• Signal Detection: Time and Phase

- Signal Detection: Frequency Offset
- Despreading

Evaluation Over-the-air

Conclusion & Outlook

Receiver Detection and Phase Correction

IntroductionCOSPAS-SARSAT

Techniques and Algorithms

- Signal Detection: Time and Phase
- Signal Detection: Frequency Offset
- Despreading

Evaluation Over-the-air

Conclusion & Outlook

Frequency Offset

before but truncated preamble

Deviation expected in the range of at least $-400\,\mathrm{Hz}$ to $400\,\mathrm{Hz}$

Peak gets barely visible Need for **Frequency** Detection

Signal Detection: Correlator Bank

Correlation with several frequency shifted versions of the preamble (T)

- Eventually reducing the susceptibility for frequency variations by only using fraction of the preamble
 - By that: possible to increase $\Delta \omega$

Signal Detection: Correlator Bank – GRC

Using FIR filters

First stage; $f_{\text{grid}} = 100 \text{ Hz}$; covered spectrum: -250 Hz < f < 250 Hz

Signal Detection: Filters in DFT Domain

Use Fast Fourier Transform

14 Artmann, Müller: Robust Reception for a Satellite-based Global Rescue System

Communications Engineering Lab (CEL)

Fine Frequency Sync: Split Preamble Method

Fine Frequency Sync: Split Preamble Method (GRC)

IntroductionCOSPAS-SARSAT

Techniques and Algorithms

- Signal Detection: Time and Phase
- Signal Detection: Frequency Offset
- Despreading
- Evaluation Over-the-air
- Conclusion & Outlook

Despreading: \sum -PRN

- Despreading by multiplication of BPSK-symbols with BPSK-preamble
- Computationally advantageous
- Quadrature cross-talk if phase not perfect

$$\begin{split} \underline{x}[n] &= a[n] + jb[n] \\ P[n] &= a[n] \cdot (\mathsf{PRN}_1 + \mathsf{PRN}_2) + jb[n] \cdot (\mathsf{PRN}_2 + \mathsf{PRN}_1) \\ \lim_{\mathsf{SNR} \to \infty} P &\approx \sum_{n=1}^{256} a[n] \cdot \mathsf{PRN}_1 + jb[n] \cdot \mathsf{PRN}_2 \end{split}$$

Despreading: Split-IQ PRNs

Despreading separately for PRN₁ and PRN₂

- Two multiplications in real domain
- Eliminates quadrature cross-talk, halves noise power

Despreading: Comparison

20 Artmann, Müller: Robust Reception for a Satellite-based Global Rescue System

Adaptive Despreading: Phase Error Feedback

Despreading with feedback of phase error based on \sum -PRN method
PRN_{\Sigma} = PRN₁ + PRN₂

Problem: Still using the worse sum-PRN for despreading.

Adaptive Despreading: Split-IQ with Phase

Method to use Split-IQ and still correct evolving phase error?

Adaptive Despreading: Results

Adaptive Despread Implementation

Adaptive Despreading also implemented

IntroductionCOSPAS-SARSAT

- Techniques and Algorithms
 - Signal Detection: Time and Phase
 - Signal Detection: Frequency Offset
 - Despreading

Evaluation Over-the-air

Conclusion & Outlook

Over-the-air results

- Tests using two different USRPs over the air
- Detected frequency offset around 100 Hz
- Detection and synchronization successful
- Adaptive despread
- Constellation diagrams from GNU Radio GUI with real-world data and identical stream

IntroductionCOSPAS-SARSAT

- Techniques and Algorithms
 - Signal Detection: Time and Phase
 - Signal Detection: Frequency Offset
 - Despreading
- Evaluation Over-the-air
- Conclusion & Outlook

Conclusion & Outlook

Take-Away

- Creation of (as far as we know) first functional transceiver for 2nd gen COSPAS-SARSAT
- Usage of improved frequency correction methods pushes beyond standard
- Over-the-air proven, suitable for deeply embedded implementation

Next up

- Integration with overlay systems
- GNU Radio through MEO
- Shrink-Down to microcontroller (Becker)

FIN

Questions?

Implementation in GNU Radio

Using GNU RADIO

Communication via USRPs

GNU RADIO is a Toolkit

Image source: https://www.gnuradio.org/

Optimization of RRC Filter Length and Roll-off-Factor

- Simulation of different output and mf filters
- Normalization of power
- Adding AWGN
- Compare correlation¹
- Optimum at around $\beta = 0.35$ and N = 9 Taps²

¹The result is not yet deterministic as it includes randomness ²Simulation with SNR=-10dB

Doppler Shift Correction

What can be done?

- Correlation with several frequency shifted versions of the preamble
- Reducing the susceptibility for frequency variations by only using fraction of the preamble (next slide)
- Using only 512 chips of preamble
- Vary over a range of -2000 Hz to 2000 Hz
- Raster of 100 Hz

Optimization of Doppler Shift Correction

- By shortening the length of the correlated preamble frequency sensitivity gets smaller but peak also gets lower
 - Frequency raster can be higher
 - But: Risk of not finding the peak
- Simulation of different lengths

Implementation of Receiver (Previous Version)

Which method will be used?

- Consideration of least possible resource usage but also reliable detection
- Use three-stage doppler correction
 - Frequency-shifted preamble taps over whole spectrum³: grid of 100 Hz; 512 taps
 - Frequency-shifted preamble taps over narrow range: grid of 20 Hz; 2048 taps
 - Time shifted preamble taps with accurate detection detection by phase shift calculation

³expected doppler range from -400Hz to 400Hz