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Light and 1ts frequency

Light 1s an electromagnetic wave

Types of Electromagnetic Radiation
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We mainly focus on the visible light



Spectra of common light sources

Light source with spikes
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Laser: a quasi-monochromatic light source

Linewidth: kHz level
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Applications need high laser monochromaticity

1. For optical lattice clocks

2. For precise laser detections

3. For precise physical state controls
4

Our objective 1s to make ultra-stable laser sources (highly
monochromatic), which mainly aim at making the next
generation of atomic clocks. :



Our motivation: next generation of optical lattice clocks
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To reach the quantum projection noise limitation, we need
an optical oscillator with a better fractional frequency
stability (at the level of 10-1% at 1 s). 7



Traditionally, high finesse Fabry-Pérot cavities are used to
obtain ultra-stable lasers.
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People usually use a servo loop to keep the laser frequency
in the narrow transmission band. It 1s called “lock”.
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Ultra-stable lasers based on high finesse Fabry-Pérot
cavities usually hold the fractional frequency stability in
the range of a few 1071 at 1s, which is mainly limited by
the fundamental thermal Brownian noise (atom fluctuation
induced cavity length change).

People are now trying to overcome this limitation by using
several new approaches. Spectral hole burning (SHB) 1s
promising one among them.



Eu’" ions absorption spectrum in an Y,SiO; crystal
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the lattice distortion (mainly caused by
doping).
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Spectral hole burning process
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Spectral hole burning process
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Spectral hole burning process
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Spectral hole burning process
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Hole life time: a few days
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Kramers-Kronig relationship
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Typical spectral holes 1n our experiment to lock the laser
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We can burn the holes with the patterns we need, which is different to the
cavity solution.
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Experimental scheme
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Typical interrogation schemes
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Multi-mode interrogation scheme
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To realize SHB based ultra-stable laser, we need several
RF signal generation and processing abilities:

rlJ

lexible optical frequency manipulation
Flexible multiple laser mode signal generation
Flexible and high-speed digital signal processing

T]

T]

1.
2.
3.
4,

GNU Radio meets most of the requirements!
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The simplified scheme of our flowgraph

Sweep
Reference mode | sorithealzsr

gr_complex *out = (gr_complex *) output_items]O0];

for (int i=0; i<noutput_items; i++)
{
out[i] = gr_complex(gr::fxpt::cos(d_phase>>32)*d_ampl, gr::fxpt::sin(d_phase>>32)*d_ampl);
d_phase += d_phase incr;
d_phase_incr += d_phase _incr_incr;

}

return noutput_items;

Signal generation part
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The simplified scheme of our flowgraph
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The simplified scheme of our flowgraph
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The simplified scheme of our flowgraph
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The simplified scheme of our flowgraph
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RX and TX

PD2
We use 1n our applications exclusively the BasicRX and

BasicTX daughterboards, which simply provide (almost)

direct access to the ADC and DAC through a balun
transformer.

28



RX and TX

PD2
RX: Down converting the detected signal frequency from a

few MHz to base band.
TX: Up converting the signal from the flowgraph run by
the computer to the carrier frequency. 2
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Synchronization of two RX ports

now = self. USRP RX.get time now()

cmd time = now + uhd.time spec(1)

self. USRP RX.set command time(cmd time)
self. USRP RX.set center freq(freq, 0)

self. USRP RX.set center freq(freq, 1)

self. USRP RX.clear command time()

30
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RX to TX delay
The delay from RX to TX directly determines the locking

band width of the control loop, which 1s very important for
noise suppression.

The delay can be designated through:

now = self. USRP RX.get time now()

t0 = now + uhd.time spec(1)

dt = uhd.time spec(delay time)

self. USRP RX.set start time(t0)

self. USRP TX.set start time(tO+dt) 2



RX to TX delay

Due to the limited processing speed of the computer, a too
low delay value could lead to a data package loss problem.

To improve this:

@® We optimized the CPU core allocation for every block in the program.
@® We overcame a possible bug (in version 3.8, the polyphase interpolator
can not be pinned to a specified core) by a serial of bash commands.

@® We turned off the hyper-threading technology (28 threads) to improve
the performance of every single core. We have 14 cores in our PC, so with
the hyper-threading technology, we have 28 threads. -
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RX to TX delay

Finally, we got a minimum loop delay of ~2 ms.

Stop
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Multi-mode laser g eneration
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Multi-mode interrogation results (no monitor mode)
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Multi-mode interrogation (with monitor mode)
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Multi-mode interrogation (with monitor mode)
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Real spectral hole patterns
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AMPM noise rejection (10% amplitude modulation depth)
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We get a PM response of 4.8*%10 rad per relative AM
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