	Learning and Classifying 00000	The Problem, The Analysis and The Solution	Results 0000	

Synchronization and Deep Learning: Experiences Learned from Dataset Creation

Cyrille Morin¹ Leonardo S. Cardoso¹ Jakob Hoydis² Jean Marie Gorce¹

¹CITI Lab Inria

²NVIDIA Research

March 30, 2023

	Learning and Classifying		
Summary			

1 Context

- 2 Dataset Generation
- 3 Learning and Classifying
- 4 The Problem, The Analysis and The Solution
- 5 Results
- 6 Conclusion

Context ●000000	Learning and Classifying 00000		
~			

Context

PhD work of Cyrille Morin

- Main topic: on Deep Learning for radio
- Specific work: transmitter identification through radio fingerprinting
- Two objectives:
 - Construct a "good" dataset with Cognitive Radio Testbed (FIT/CorteXlab)
 - Test Deep Learning Convolutional Neural Network (CNN) models to fingerprint

Disclaimer!!

- Deep Learning for Radio \Rightarrow Not the holy grail!
- Choose your problems:
 - \blacksquare Many problems in communications have well behaved closed form solutions \Rightarrow no need for DL
 - Some problems are too difficult to model, or models are too complex or current tools are not adaptive \Rightarrow DL may help

Context			
000000			

Transmitter Fingerprinting with Deep Learning

What is radio fingerprinting?

- Using the radio unique characteristics of the transmitters to tell them apart
- Radio's version of recognising the "voice" of familiar people on the phone
- Achieve radio identification in spite of the ID fields of packets!

Why do radio fingerprinting?

- IoT/small packet context
 - IoT based sensor networks: payload is of the same order of size as headers
 - High cost of header w.r.t. payload (energy and medium access)
 - Potential gains with TX identification based on radio fingerprinting

Security/privacy context

- Make ID spoofing harder :)
- Enable ID-field validation :)
- Track individual radios even if address is randomised :(

Context 00●0000	Learning and Classifying		

Context 000●000		Learning and Classifying 00000		
(Identifiab	ole) Radio Charad	cteristics		

Base band

- Implementations of digital filters
- processing delays, jitter

...

Context 000●000		Learning and Classifying 00000		
(Identifial	ole) Radio Chara	cteristics		

Base band

- Implementations of digital filters
- processing delays, jitter

....

Intermediate Frequency

- Different sampling frequencies, digital-to-analog converters (linearity, resolution)
- Filters, amplifiers
- I/Q imbalance, DC offsets

....

Context 0000000	Learning and Classifying 00000		

(Identifiable) Radio Characteristics

Base band

- Implementations of digital filters
- processing delays, jitter

....

Intermediate Frequency

- Different sampling frequencies, digital-to-analog converters (linearity, resolution)
- Filters, amplifiers
- I/Q imbalance, DC offsets

....

Radio Frequency

- RF filter characteristics, RF amplifiers
- Local oscillator frequency offset, jitter, noise

····

Context			
0000000			

(Identifiable) Radio Characteristics

From Prior art

Channel effects [Xiao2009] [Xiao2009a]

- Channel effects dominate over RF signature
- Identification is restricted to propagation features: not robust

Power amplifier characteristics [Sankhe2018] and [Wong2018] [Hanna2018]

- Artificially manipulate the TX signals to exploit different characteristics
- Easy to impersonate
- Local oscillator imperfections [Hanna2018]

Context 00000●0	Learning and Classifying 00000		
Objectives			

The task at hand

- Identify 21 transmitters using an IoT like signal (USRP N2932 equiv. N210 with SBX)
- Use only raw IQ samples
- No channel equalization
- Produce a correctly labelled dataset devoid of channel bias (as much as we can)
- Test learning and generalisation ability

Context 000000●		Learning and Classifying		
FIT/CorteX	lab			

Characteristics

- Total of 42 radio nodes among USRPs N2932 and N2944R, PicoSDRs 2x2 and 4x4, Octoclocks for synchronization (USRPs only)
- Fully eletromagnetically isolated and semi-anechoised experimentation room (at least 60 dB of isolation)
- Robots for radio mobility
- Remote access operation, 100% automated experiment deployment

Dataset Generation •0000000	Learning and Classifying 00000		

Dataset Generation

Dataset Generation ○●○○○○○○	Learning and Classifying		

Overall structure

Dataset Generation 0●000000	Learning and Classifying 00000		

Overall structure

	Dataset Generation 00●00000	Learning and Classifying 00000				
Transmi	ssion					
	Options Durpt Langeage Types Sciences Options: No.20 Main (System: No.20 Water (System: No.	he has been been been been been been been bee	Parameter (DS s, r) = 0; (DS	Struct Variable speaks speaks speaks speaks speaks backer220 backer220 Variable backer220 Variable backer220 Variable backer220 Variable backer220 Variable backer220 Variable backer220 Variable backer220 Variable backer220 Variable	B Unschlafe (B), mali (B), manif, gant (Jen Vahler, 100) de de (ID) Varlable (B) Varlable (ID) i Upprovind, gant (Jen Vahler, 100) i Varlable (Jen) Upprovind, gant (Jen Vahler, 100)	
	OFOH Transmitter Fri Cangilio II Fri C	Boort Di, H. Short DD, F. Short DD, F. Short DD, F. Short DD, F. Strange State	Beert BD, P Beert	am to PDU W protoc (km)	POU to Tagged Stream	
	Revealed to Registed Strate Revealed Register Strategies Strategie	Noto Source Nato Type Ministro Amplitude 1 Seed 0 Selector			UHD: USRP Sink	
	Random Uniform Saves Maximum Signature Sandi 10 Ventor Saves Nagara La Califor Nagara La Califor Nagar	Smallet and the Medicator smallet Standing Control (Standing Cont	Hultiply Rult Source T for Complex	m Wax 1986, 500 200 Trigged Stream Multiply Length 1 Length Equations (Joint Link) Length Scales 1:31/5 Used for USP Burst mode	9 9 10 10 10 10 10 10 10 10 10 10 10 10 10	

Dataset Generation 0000000	Learning and Classifying 00000		

Payload selection

	Dataset Generation	Learning and Classifying 00000		
Frame				

Dataset Generation	Learning and Classifying		
00000000			

Reception and Labeling (Simplified)

	Dataset Generation 000000000	Learning and Classifying 00000		
_				

Reception and Labeling

	Dataset Generation 0000000	Learning and Classifying 00000		
Recontion	and Labeling (z	oom)		

	Learning and Classifying ●0000		

Learning and Classifying

	Learning and Classifying ○●○○○		

Classification

Classifier and data

- Gold standard classifiers for fingerprinting: Convolutional Neural Networks (CNN)
- Used mainly for image recognition, due to its feature extraction capabilities
- Raw packet (600 samples) is used to construct an "image"
- $\blacksquare \text{ Complex samples} \Rightarrow$
 - Real part is encoded in first column
 - Imag part is encoded in second column
 - Rows are each sample of the packet

```
■ 2 × N<sub>samples</sub> "image"
```

Data handling

- \blacksquare 50000 \times 21 = 1050000 examples in one dataset
- Dataset examples split in 70% training, 10% validation and 20% test sets

	Learning and Classifying		
	00000		

Neural network architecture

	Learning and Classifying 000●0		
÷			

Training and testing process

Training process

- Offline on a GPU server connected to FIT/CorteXlab
- 128 examples per batch
- More than 30 training epochs

	Learning and Classifying 0000●		

Generalisation capabilities

	Learning and Classifying 00000	The Problem, The Analysis and The Solution •00000	

Moving to multi-RX: three months of misery...

	Learning and Classifying 00000	The Problem, The Analysis and The Solution 0●0000	

Move to MultiRX

What we have done until now...

- Up to this point we were using node 6 as the RX
- High percentage accuracy on tests over the same training dataset (good)

	Learning and Classifying 00000	The Problem, The Analysis and The Solution 00000	

Move to MultiRX

What we have done until now...

- Up to this point we were using node 6 as the RX
- High percentage accuracy on tests over the same training dataset (good)

Need to add channel and receiver characteristics variations \Rightarrow MultiRX

- Create datasets with other receivers
- Combine all datasets into a big mixed dataset to mix all channels
- Provide generalisation with respect to receiver RF signature and channels

	Learning and Classifying 00000	The Problem, The Analysis and The Solution ○●○○○○	

Move to MultiRX

What we have done until now...

- Up to this point we were using node 6 as the RX
- High percentage accuracy on tests over the same training dataset (good)

Need to add channel and receiver characteristics variations \Rightarrow MultiRX

- Create datasets with other receivers
- Combine all datasets into a big mixed dataset to mix all channels
- Provide generalisation with respect to receiver RF signature and channels

Problem

Multi-RX datasets gave very poor performance!

	Learning and Classifying 00000	The Problem, The Analysis and The Solution	

SingleRX tests, but this time done over more RXs

 \blacksquare Same: Training and testing on the same dataset works perfectly for the selected set of RXs \Rightarrow good

	Learning and Classifying 00000	The Problem, The Analysis and The Solution	

- **Same:** Training and testing on the same dataset works perfectly for the selected set of RXs \Rightarrow good
- **Cross:** Training on dataset of one RX and testing on one of another RX yields poor results \Rightarrow expected

	Learning and Classifying	The Problem, The Analysis and The Solution	

- Same: Training and testing on the same dataset works perfectly for the selected set of RXs \Rightarrow good
- Cross: Training on dataset of one RX and testing on one of another RX yields poor results ⇒ expected
- After: Training and testing on a dataset for the same RX collected at different moments:

	Learning and Classifying	The Problem, The Analysis and The Solution	

- Same: Training and testing on the same dataset works perfectly for the selected set of RXs \Rightarrow good
- **Cross:** Training on dataset of one RX and testing on one of another RX yields poor results \Rightarrow expected
- After: Training and testing on a dataset for the same RX collected at different moments:
 - Poor results for all RXs \Rightarrow weird...

			The Problem, The Analysis and The Solution		
0000000	0000000	00000	00000	0000	

- **Same:** Training and testing on the same dataset works perfectly for the selected set of RXs \Rightarrow good
- **Cross:** Training on dataset of one RX and testing on one of another RX yields poor results \Rightarrow expected
- After: Training and testing on a dataset for the same RX collected at different moments:
 - Poor results for all RXs \Rightarrow weird...
 - Except node $6 \Rightarrow$ WTH!??!!??

			The Problem, The Analysis and The Solution		
0000000	0000000	00000	00000	0000	

- **Same:** Training and testing on the same dataset works perfectly for the selected set of RXs \Rightarrow good
- **Cross:** Training on dataset of one RX and testing on one of another RX yields poor results \Rightarrow expected
- After: Training and testing on a dataset for the same RX collected at different moments:
 - Poor results for all RXs \Rightarrow weird...
 - Except node $6 \Rightarrow WTH!??!!??$

	Learning and Classifying	The Problem, The Analysis and The Solution 000●00	
Debugging			

- \blacksquare Exchange USRP devices that do not generalise \Rightarrow some replacements work, some others don't
- \blacksquare Hours and hours of analysis of hundreds of base band packets by eye \Rightarrow no visible differences

	Learning and Classifying 00000	The Problem, The Analysis and The Solution 000●00	
Debugging			

- \blacksquare Exchange USRP devices that do not generalise \Rightarrow some replacements work, some others don't
- \blacksquare Hours and hours of analysis of hundreds of base band packets by eye \Rightarrow no visible differences

Hypothesis

	Learning and Classifying 00000	The Problem, The Analysis and The Solution 000●00	
Debugging			

- Exchange USRP devices that do not generalise \Rightarrow some replacements work, some others don't
- Hours and hours of analysis of hundreds of base band packets by eye \Rightarrow no visible differences

Hypothesis

Could it be a sampling/synchronization problem?

	Learning and Classifying	The Problem, The Analysis and The Solution 000●00	
Debugging			

- Exchange USRP devices that do not generalise \Rightarrow some replacements work, some others don't
- \blacksquare Hours and hours of analysis of hundreds of base band packets by eye \Rightarrow no visible differences

Hypothesis

Could it be a sampling/synchronization problem?

Facts

- Before starting the MultiRX tests the octoclocks were installed
- We turned on "external reference clock" on the basis of "it can not hurt to be synchronized"

		Learning and Classifying 00000	The Problem, The Analysis and The Solution 0000€0	
Testing th	ne hypothesis			

Disable "external reference clock" and repeat the generalisation tests \Rightarrow

		Learning and Classifying 00000	The Problem, The Analysis and The Solution 0000€0	
Testing th	ne hypothesis			

Disable "external reference clock" and repeat the generalisation tests \Rightarrow IT WORKS!!!

		Learning and Classifying 00000	The Problem, The Analysis and The Solution 0000€0	
Testing th	ne hypothesis			

Disable "external reference clock" and repeat the generalisation tests \Rightarrow IT WORKS!!!

So what happened to node 6?

		Learning and Classifying 00000	The Problem, The Analysis and The Solution 0000€0	
Testing th	ne hypothesis			

Disable "external reference clock" and repeat the generalisation tests \Rightarrow IT WORKS!!!

So what happened to node 6?

We verified the cable between the USRP and its octoclock \Rightarrow continuity issues

	Learning and Classifying 00000	The Problem, The Analysis and The Solution 0000●0	

Testing the hypothesis

Disable "external reference clock" and repeat the generalisation tests \Rightarrow IT WORKS!!!

So what happened to node 6?

We verified the cable between the USRP and its octoclock \Rightarrow continuity issues

	Learning and Classifying 00000	The Problem, The Analysis and The Solution 00000●	

Final explanation

- The signal used to train is always sampled at the same rate (2 samples/syms) at the RX, but with:
 - A random initial sampling time for each transmission for unsynchronised nodes
 - A fixed and constant initial sampling time for each transmission for synchronized nodes

Which essentially means:

- A random initial sampling time for each transmission
 - \Rightarrow CNN learns to "ignore" sampling differences
- A fixed and constant initial sampling time for each transmission
 - \Rightarrow CNN learns one sampling and can not generalise to another sampling time

	Learning and Classifying 00000	Results ●000	

Let's dig deeper...

	Learning and Classifying 00000	Results 0●00	

Sample time synchronisation

Accuracy over sampling time offset (upsampling \times 8)

	Learning and Classifying 00000	Results 00●0	

Sample time synchronisation

Accuracy over sample synchronisation offset (upsampling \times 8)

	Learning and Classifying 00000	Results 000●	

Synced radio	Tx	Both	Rx	None
Tx	81.2%	34.5%	19.2%	38.3%
Both	54.4%	45.6%	38.2%	38.2%
Rx	21.1%	28.5%	80.2%	22.3%
None	41.3%	43.8%	34.6%	81.1%

Table: Accuracy of networks trained on one synchronisation possibility and tested on the others

	Learning and Classifying 00000		Conclusion •
C 1 1			

Conclusion

Takeaways

- Creating datasets for training DL for radio (or anything else) can be hard
- Seemingly innocuous parameters and settings can completely derail your DL system
- Datasets with raw I-Q samples: always check your clock source on UHD
 - Using PPS to synchronise time is probably OK
 - Using the 10 MHz REF signal to synchronise clock references should be carefully studied in your specific case
- Keep a logbook of important changes to your platforms if you're changing them while experimenting

If you want to explore further

- Full paper is online at: https://hal.inria.fr/hal-03117090/
- Datasets online at: https://wiki.cortexlab.fr/doku.php?id=tx-id
- FIT/CorteXlab wiki page: https://wiki.cortexlab.fr
- Next publication on this is coming soon...