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Context

PhD work of Cyrille Morin

= Main topic: on Deep Learning for radio

m Specific work: transmitter identification through radio fingerprinting

= Two objectives:
= Construct a “good” dataset with Cognitive Radio Testbed (FIT/CorteXlab)
m Test Deep Learning Convolutional Neural Network (CNN) models to fingerprint

Disclaimer!!

m Deep Learning for Radio = Not the holy grail!

m Choose your problems:
= Many problems in communications have well behaved closed form solutions

= no need for DL
m Some problems are too difficult to model, or models are too complex or current tools are not adaptive

= DL may help
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Transmitter Fingerprinting with Deep Learning

What is radio fingerprinting?

m Using the radio unique characteristics of the transmitters to tell them apart

= Radio’s version of recognising the “voice” of familiar people on the phone

m Achieve radio identification in spite of the ID fields of packets!

Why do radio fingerprinting?

m loT /small packet context

m loT based sensor networks: payload is of the same order of size as headers
m High cost of header w.r.t. payload (energy and medium access)
m Potential gains with TX identification based on radio fingerprinting

= Security/privacy context

m Make ID spoofing harder :)
m Enable ID-field validation :)
= Track individual radios even if address is randomised :(
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(Identifiable) Radio Characteristics

u Implementations of digital filters

m processing delays, jitter
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(Identifiable) Radio Characteristics

u Implementations of digital filters

m processing delays, jitter

Intermediate Frequency

= Different sampling frequencies, digital-to-analog converters (linearity, resolution)
m Filters, amplifiers
» 1/Q imbalance, DC offsets

Morin, Hoydis, Cardoso, Gorce Sync vs DL March 30,



Context set G i r d Classifying € lem, The Analysis and The Solution
[e]e]e] le]ele) D

(Identifiable) Radio Characteristics

m Implementations of digital filters

m processing delays, jitter

m ..
Intermediate Frequency

= Different sampling frequencies, digital-to-analog converters (linearity, resolution)
m Filters, amplifiers
» 1/Q imbalance, DC offsets

m ..
Radio Frequency

m RF filter characteristics, RF amplifiers
m Local oscillator frequency offset, jitter, noise
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(Identifiable) Radio Characteristics

u Channel effects [Xia02009] [Xia0o2009a]

m Channel effects dominate over RF signature
m ldentification is restricted to propagation features: not robust

u Power amplifier characteristics [Sankhe2018] and [Wong2018] [Hanna2018]

m Artificially manipulate the TX signals to exploit different characteristics
m Easy to impersonate

= Local oscillator imperfections [Hanna2018]
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Objectives

The task at hand

= Identify 21 transmitters using an loT like signal (USRP N2932 - equiv. N210 with SBX)
m Use only raw IQ samples

m No channel equalization

= Produce a correctly labelled dataset devoid of channel bias (as much as we can)

m Test learning and generalisation ability
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FIT /CorteXlab

aracteristics

m Total of 42 radio nodes among USRPs N2932 and N2944R, PicoSDRs 2x2 and 4x4, Octoclocks for
synchronization (USRPs only)

= Fully eletromagnetically isolated and semi-anechoised experimentation room (at least 60 dB of isolation)
u Robots for radio mobility

= Remote access operation, 100% automated experiment deployment

Morin, Hoydis, Cardoso, Gorce Sync vs DL



Context Dataset Generation Learning and Classifying The Problem, The Analysis and The Solution Results Conclusion
[e]e]e]e]o]e]e) 90000000 00000 000000 [e]e]e]e] [e]

Dataset Generation

Morin, Hoydis, Cardoso, Gorce



Dataset Generation
0@000000

Overall structure

Scheduler
\V
node #1
o Y
@
£ identif.
5 i 2
3 node #2 receiver
>
. \V
node #21

Sync vs DL




Dataset Generation
0@000000

Overall structure

Scheduler

UDP trigger

\V
\V

N \V,
node #21

identif.

receiver

o o al o
‘m
uswe uswe usar
uswe usar w7 fusee usne

o =] o = = o

3 e

Sync vs DL

E} ”
usee uswe usae
-] -] -] T =




Dataset Generation
00@00000

Transmission

Variable Parameter meter Struct Variable
8 ey | iy e
ption: Type: it
Run Options: un to Compietion

«
Value: preamble: 79
Short 10: mbleGuard: 40
header: 320
- Parameter headerGuard: 100
Ve L mo00000000 . o =

ain

Labet: minimum gain
Type: Hoat

Type: Float
Value:

Short 10: 1

s 1m Value:
Short 10: Short 10:7 Short10: .

OFOM Transmitter

UDP trigger
Stream to Tagged Stream
9 T Number: 0

dress: 0000
Humber: 356k

Lengths: 3¢, 75,40, 320,100

Ensureonyone
i< generated

Avoid USRP.
Saturation/clpping

o g e et

Header content

Constellation Modulator
Consteliation: <gnu. 4c3670>

e Number of Qutputs
I oierentis ncouing: s [B——>1 .

Excess BW: 350m

Stream Mux
Longths: 3530k, 560, 200.

Tagged Stream Multiply Length Tag
Length tag names: packet fen
Length Scalar: 121475

X
mode S8 tag name: packet en

Used for USRP burs

Consttiaion bt

Float To Complex

m
Phase (Radians

Vary signal ampitude

orin, Hoydis, Cardoso, Gorc: Sync vs DL



Dataset Generation
[e]e]e] lelelele]

Payload selection

(o )
Random
source
S oo Jo
—
Rar;(i:ltom '\: O ’ modulated
source : symbols
— |—O ) |_0 :
\0— QPSK
T — |—0 i k :
Predefined ' select
bit : modulation
sequence :
~—— select
bits
source

Morin, Hoydis, Cardoso, Gorce Sync vs DL ch 30, 2023



Dataset Generation
[e]e]ee] lelele]

Guard interval Guard interval
AO samples 100 samples

M“ “u

~ J - o) (- . J (- . J
Wake up zero padding Preamble OFDM Header Payload
3000 samples 80 samples 320 samples 560 samples

Sync vs DL



Dataset Generation
O0000e00

Reception and Labeling (Simplified)

USRP Corre_lation Time ] header + packet
RX with sync
Zadoff-Chu yne.
Header Payload
decoding extraction
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Reception and Labeling (zoom)

Option
vt anuas en
Ganarate Option

Tanmtnn s Conpiion

Blocking s

Hesdar s s
Txamount

UND: USRP Source corrsintor

Mbo: lock Sources tcra Skip Hesd Samples per Symbol:
f samerate 5o 50 N ftom: 14 Tag markieg deey: 0
“

o Canter raq s 531 |

Petendie Hoador i
preambe Jength: 100 Poylond iz 60
Lo ot 20 Senato sorver: e

Tag.name: ot e

Dlacking e

o: Antemnas T

TIITTIIIIITrTy

o o 312
ocking 350

o 314
Blocking s

forin, Hoydis, Cardoso, Gorce Sync vs DL

Complex To Float

Complax To Float

Complex To Foat

Complex To Float

Fie Sink
Pl e e 1t
Unbatterd: o1

Append e O

File Sink

Unbutter
Appand s v

File sink
e
Arpema e o

Appan fle: Overwre

Unbuttrad: o1
Append s vt

Unbuttred: o1
Appond

s

Urnirea 01
Append s v

Sink
i v o
i Sy

Append o vt

unbotters
Ropans s ovrts

i3

e s vt

Fie Sink

Unbutter
Append s vt

e Sink
Unbuttere
Complex To Foat ..mm. Owrwite

e me i
Unbuttred: o1
Append s v

Blockin:

Fie Sink

un on
Append s v

Append e v

ter

i
Appand s Overare

Pl e 164

e
Append s v

Fie sink
P

—TY
March 30, 2



Context Dataset Generation Learning and Classifying The Problem, The Analysis and The Solution Results Conclusion
[e]e]e]e]o]e]e) 00000000 0000 000000 [e]e]e]e] [e]

Learning and Classifying

Morin, Hoydis, Cardoso, Gorce



Dataset G iol Learning and Classifying € m, The Analysis and The Solution Conclusion
0@000 (0]

Classification

Classifier and data

Gold standard classifiers for fingerprinting: Convolutional Neural Networks (CNN)

Used mainly for image recognition, due to its feature extraction capabilities
Raw packet (600 samples) is used to construct an “image”

Complex samples =

m Real part is encoded in first column
m Imag part is encoded in second column
u Rows are each sample of the packet

B 2 X Nggmples ‘image”

Data handling

m 50000 x 21 = 1050000 examples in one dataset
= Dataset examples split in 70% training, 10% validation and 20% test sets
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Neural network architecture

L JL J
T T
Input Convolutionnal layers Fully connected layers Output
[600.2] ELU activation ELU activation Softmax
Max pooling between each layer L1 regularisation 21 classes
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Training and testing process

Training process

= Offline - on a GPU server connected to FIT/CorteXlab
m 128 examples per batch

m More than 30 training epochs
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Generalisation capabilities

MonoRx
| ! !
0 o © N o <t
X D D S o0 o B
S S > S &5 - o
100 —r—1 — = |
—
N 2
~— Lol —
> © <
9 0
o
5 50 -
(S}
(%]
<
0% S § S . (SN S (SN S -

T T T
Plain Var Robot

Test scenario

00 Plain 0 0 Varying amplitude I 0 Robot

March 30, 2023

Sync vs DL

Morin, Hoydis, Cardoso, Gorce



Context Dataset Generation Learning and Classifying The Problem, The Analysis and The Solution Results Conclusion
[e]e]e]e]o]e]e) 00000000 00000 @00000 [e]e]e]e] [e]

Moving to multi-RX: three months of misery...
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at we have done until now

m Up to this point we were using node 6 as the RX

= High percentage accuracy on tests over the same training dataset (good)
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Move to MultiRX

at we have done until now

m Up to this point we were using node 6 as the RX

= High percentage accuracy on tests over the same training dataset (good)

Need to add channel and receiver characteristics variations = MultiRX

m Create datasets with other receivers
m Combine all datasets into a big mixed dataset to mix all channels

m Provide generalisation with respect to receiver RF signature and channels
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Dataset

Move to MultiRX

at we have done until now

m Up to this point we were using node 6 as the RX

= High percentage accuracy on tests over the same training dataset (good)

Need to add channel and receiver characteristics variations = MultiRX

m Create datasets with other receivers
m Combine all datasets into a big mixed dataset to mix all channels

m Provide generalisation with respect to receiver RF signature and channels

m Multi-RX datasets gave very poor performance!
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Further investigation

SingleRX tests, but this time d over more RXs

= Same: Training and testing on the same dataset works perfectly for the selected set of RXs = good
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Further investigation

SingleRX tests, but this time d over more RXs

= Same: Training and testing on the same dataset works perfectly for the selected set of RXs = good

m Cross: Training on dataset of one RX and testing on one of another RX yields poor results = expected
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Further investigation

SingleRX tests, but this time d over more RXs

= Same: Training and testing on the same dataset works perfectly for the selected set of RXs = good

m Cross: Training on dataset of one RX and testing on one of another RX yields poor results = expected
m After: Training and testing on a dataset for the same RX collected at different moments:
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Further investigation

SingleRX tests, but this time d over more RXs

= Same: Training and testing on the same dataset works perfectly for the selected set of RXs = good

m Cross: Training on dataset of one RX and testing on one of another RX yields poor results = expected
m After: Training and testing on a dataset for the same RX collected at different moments:
m Poor results for all RXs = weird...
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Further investigation

SingleRX tests, but this time d over more RXs

= Same: Training and testing on the same dataset works perfectly for the selected set of RXs = good

m Cross: Training on dataset of one RX and testing on one of another RX yields poor results = expected
m After: Training and testing on a dataset for the same RX collected at different moments:

m Poor results for all RXs = weird...
n Except node 6 = WTHI??11?7?
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Further investigation

SingleRX tests, but this time done over more RXs

= Same: Training and testing on the same dataset works perfectly for the selected set of RXs = good
m Cross: Training on dataset of one RX and testing on one of another RX yields poor results = expected

m After: Training and testing on a dataset for the same RX collected at different moments:
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Debugging

Verification of RXs

m Exchange USRP devices that do not generalise = some replacements work, some others don't

m Hours and hours of analysis of hundreds of base band packets by eye = no visible differences
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Verification of RXs

m Exchange USRP devices that do not generalise = some replacements work, some others don't

m Hours and hours of analysis of hundreds of base band packets by eye = no visible differences

Hypothesis
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Debugging

Verification of RXs

m Exchange USRP devices that do not generalise = some replacements work, some others don't

m Hours and hours of analysis of hundreds of base band packets by eye = no visible differences

Hypothesis

Could it be a sampling/synchronization problem?
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Debugging

Verification of RXs

m Exchange USRP devices that do not generalise = some replacements work, some others don't

m Hours and hours of analysis of hundreds of base band packets by eye = no visible differences

Hypothesis

Could it be a sampling/synchronization problem?

m Before starting the MultiRX tests the octoclocks were installed
m We turned on "external reference clock” on the basis of "it can not hurt to be synchronized”
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Testing the hypothesis

Disable "external reference clock” and repeat the generalisation tests =-
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Testing the hypothesis

Disable "external reference clock” and repeat the generalisation tests = IT WORKS!!!
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Disable "external reference clock” and repeat the generalisation tests = IT WORKS!!!

So what happened to node 67
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Testing the hypothesis

Disable "external reference clock” and repeat the generalisation tests = IT WORKS!!!

So what happened to node 67

We verified the cable between the USRP and its octoclock =- continuity issues
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Testing the hypothesis

Disable "external reference clock” and repeat the generalisation tests = IT WORKS!!!

So what happened to node

We verified the cable between the USRP and its octoclock =- continuity issues
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Final explanation

m The signal used to train is always sampled at the same rate (2 samples/syms) at the RX, but with:
= A random initial sampling time for each transmission for unsynchronised nodes
m A fixed and constant initial sampling time for each transmission for synchronized nodes

m Which essentially means:

m A random initial sampling time for each transmission
=- CNN learns to "ignore” sampling differences
m A fixed and constant initial sampling time for each transmission
= CNN learns one sampling and can not generalise to another sampling time

Sync vs DL
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Let’s dig deeper...
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Sample time synchronisation

Accuracy over sampling time offset (upsampling x 8)

Accuracy
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Sample time synchronisation

Accuracy over sample synchronisation offset (upsampling x 8)

Accuracy
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Synced radio | Tx Both Rx None
Tx 81.2% | 34.5% | 19.2% | 38.3%
Both 54.4% | 45.6% | 38.2% | 38.2%

Rx 21.1% | 28.5% | 80.2% | 22.3%
None 41.3% | 43.8% | 34.6% | 81.1%

Table: Accuracy of networks trained on one synchronisation possibility and tested on the others
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Conclusion

m Creating datasets for training DL for radio (or anything else) can be hard

m Seemingly innocuous parameters and settings can completely derail your DL system
m Datasets with raw I-Q samples: always check your clock source on UHD

m Using PPS to synchronise time is probably OK
m Using the 10 MHz REF signal to synchronise clock references should be carefully studied in your specific case

m Keep a logbook of important changes to your platforms if you're changing them while experimenting

If you want to explore further

u Full paper is online at: https://hal.inria.fr/hal-03117090/
m Datasets online at: https://wiki.cortexlab.fr/doku.php?id=tx-id
m FIT/CorteXlab wiki page: https://wiki.cortexlab.fr

m Next publication on this is coming soon...
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